TL500I, TL500C, TL501I, TL501C, TL502C, TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

D2477 DECEMBER 1979-REVISED JANUARY 1989

TL500I, TL500C, TL501I, TL501C ANALOG PROCESSORS

- True Differential Inputs
- Automatic Zero
- Automatic Polarity
- High Input Impedance . . . 10⁹ Ohms Typically

TL500I, TL500C CAPABILITIES

- Resolution . . .14 Bits (with TL502C)
- Linearity Error . . . 0.001%
- 4 1/2-Digit Readout Accuracy with External Precision Reference

TL502C/TL503C DIGITAL PROCESSORS

- Fast Display Scan Rates
- Internal Oscillator May Be Driven or Free-Running
- Interdigit Blanking
- Over-Range Blanking
- 4 1/2-Digit Display Circuitry
- High-Sink-Current Digit Driver for Large Displays

TL5011, TL501C CAPABILITIES

- Resolution . . . 10-13 Bits (with TL502C)
- Linearity Error . . . 0.01%
- 3 1/2-Digit Readout Accuracy

TL502C CAPABILITIES

- Compatible with Popular Seven-Segment Common-Anode Displays
- High-Sink-Current Segment Driver for Large Displays

TL503C CAPABILITIES

- Multiplexed BCD Outputs
- High-Sink-Current BCD Outputs

Caution. These devices have limited built-in gate protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

description

The TL500I, TL500C, TL501I, and TL501C analog processors and TL502C and TL503C digital processors provide the basic functions for a dual-slope-integrating analog-to-digital converter.

The TL500 and TL501 contain the necessary analog switches and decoding circuits, reference voltage generator, buffer, integrator, and comparator. These devices may be controlled by the TL502C, TL503C, by discrete logic, or by a software routine in a microprocessor.

The TL502C and TL503C each includes oscillator, counter, control logic, and digit enable circuits. The TL502C provides multiplexed outputs for seven-segment displays, while the TL503C has multiplexed BCD outputs.

When used in complementary fashion, these devices form a system that features automatic zero-offset compensation, true differential inputs, high input impedance, and capability for 4 1/2-digit accuracy. Applications include the conversion of analog data from high-impedance sensors of pressure, temperature, light, moisture, and position. Analog-to-digital-logic conversion provides display and control signals for weight scales, industrial controllers, thermometers, light-level indicators, and many other applications.

TL500I, TL500C, TL501I, TL501C, TL502C, TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

principles of operation

The basic principle of dual-slope-integrating converters is relatively simple. A capacitor, C_X , is charged through the integrator from V_{CT} for a fixed period of time at a rate determined by the value of the unknown voltage input. Then the capacitor is discharged at a fixed rate (determined by the reference voltage) back to V_{CT} where the discharge time is measured precisely. The relationship of the charge and discharge values are shown below (see Figure 1).

$$V_{CX} = V_{CT} - \frac{V_{It1}}{R_X C_X}$$

$$V_{CT} = V_{CX} - \frac{V_{ref} t_2}{R_X C_X}$$
Discharge
(1)
(2)

Combining equations 1 and 2 results in:

$$\frac{V_{I}}{V_{ref}} = -\frac{t_{2}}{t_{1}}$$
(3)

where:

V_{CT} = Comparator (offset) threshold voltage

- V_{CX} = Voltage change across C_X during t₁ and during t₂ (equal in magnitude)
 - V_I = Average value of input voltage during t₁
 - t1 = Time period over which unknown voltage is integrated
 - t₂ = Unknown time period over which a known reference voltage is integrated.

Equation (3) illustrates the major advantages of a dual-slope converter:

- a. Accuracy is not dependent on absolute values of t1 and t2, but is dependent on their ratios. Longterm clock frequency variations will not affect the accuracy.
- b. Offset values, VCT, are not important.

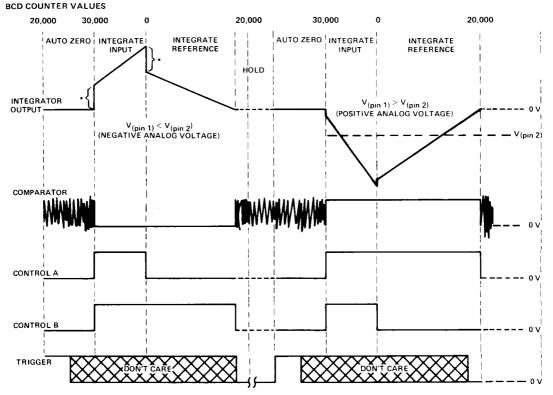
The BCD counter in the digital processor (see Figure 2) and the control logic divide each measurement cycle into three phases. The BCD counter changes at a rate equal to one-half the oscillator frequency.

auto-zero phase

The cycle begins at the end of the integrate-reference phase when the digital processor applies low levels to inputs A and B of the analog processor. If the trigger input is at a high level, a free-running condition exists and continuous conversions are made. However, if the trigger input is low, the digital processor stops the counter at 20,000, entering a hold mode. In this mode, the processor samples the trigger input every 4000 oscillator pulses until a high level is detected. When this occurs, the counter is started again and is carried to completion at 30,000. The reference voltage is stored on reference capacitor C_{ref} , comparator offset voltage is stored on integration capacitor C_X , and the sum of the buffer and integrator offset voltages is stored on zero capacitor C_Z . During the auto-zero phase, the comparator output is characterized by an oscillation (limit cycle) of indeterminate waveform and frequency that is filtered and d-c shifted by the level shifter.

integrate-input phase

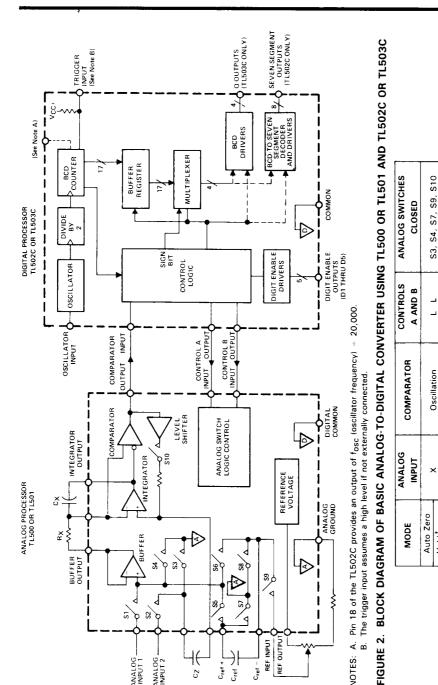
The auto-zero phase is completed at a BCD count of 30,000, and high levels are applied to both control inputs to initiate the integrate-input phase. The integrator charges C_X for a fixed time of 10,000 BCD counts at a rate determined by the input voltage. Note that during this phase, the analog inputs see only the high impedance of the noninverting operational amplifier input. Therefore, the integrator responds only to the difference between the analog input terminals, thus providing true differential inputs.



TL500I, TL500C, TL501I, TL501C, TL502C, TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCK

integrate-reference phase

At a BCD count of 39,999 + 1 = 40,000 or 0, the integrate-input phase is terminated and the integrate-reference phase is begun by sampling the comparator output. If the comparator output is low corresponding to a negative average analog input voltage, the digital processor applies a low and a high to inputs A and B, respectively, to apply the reference voltage stored on C_{ref} to the buffer. If the comparator output is high corresponding to a positive input, inputs A and B are made high and low, respectively, and the negative of the stored reference voltage is applied to the buffer. In either case, the processor automatically selects the proper logic state to cause the integrator to ramp back toward zero at a rate proportional to the reference voltage. The time required to return to zero is measured by the counter in the digital processor. The phase is terminated when the integrator output crosses zero and the over-range indication is activated. When activated, the over-range indication blanks all but the most significant digit and sign.


Seventeen parallel bits (4-1/2 digits) of information are strobed into the buffer register at the end of the integration phase. Information for each digit is multiplexed out to the BCD outputs (TL503C) or the seven-segment drivers (TL502C) at a rate equal to the oscillator frequency divided by 200.

*This step is the voltage at pin 2 with respect to analog ground

FIGURE 1. VOLTAGE WAVEFORMS AND TIMING DIAGRAM

4 4

2 S

4 4

ъ ò

ANALOG ANALOG

S1 ß 4 4

S S

ק Cref + L

Зò 8ç

> 4 <

> > Cref -

ןּ יי

8 d ⊲

REF OUTPUT REF INPUT

TL500, TL501, TL502C, TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

H ≡ High, L ≡ Iow, X ≡ Irrelevant

S8

S5,

S3,

S3, S6, S7

I

r

÷ + т _

S2

S1,

I

I

Negative

×

Reference

Positive

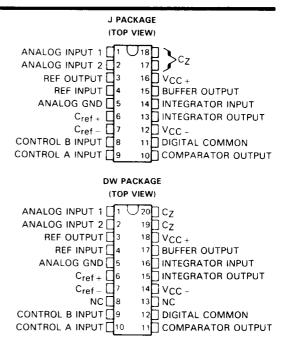
Integrate Integrate

Hold Input ¹ If the trigger input is low at the beginning of the auto-zero cycle, the system will enter the hold mode. A high level (or open circuit) will signal the digital processor to continue or resume normal operation. [‡] This is the state of the comparator output as determined by the polarity of the analog input during the integrate input phase.

₽

Ş

NOTES: A. B.

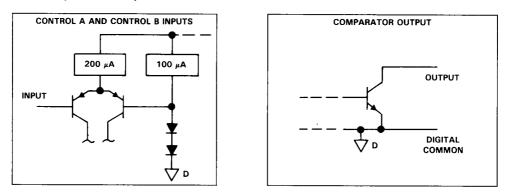

1

1

BUFFER

description of analog processors

The TL500 and TL501 analog processors are designed to automatically compensate for internal zero offsets, integrate a differential voltage at the analog inputs, integrate a voltage at the reference input in the opposite direction, and provide an indication of zero-voltage crossing. The external control mechanism may be a microcomputer and software routing, discrete logic, or a TL502C or TL503C controller. The TL500 and TL501 are designed primarily for simple, cost-effective, dual-slope analog-todigital converters. Both devices feature true differential analog inputs, high input impedance, and an internal reference-voltage source. The TL500 provides 4-1/2-digit readout accuracy when used with a precision external reference voltage. The TL501 provides 100-ppm linearity error and 3-1/2-digit accuracy capability. These devices are manufactured using TI's advanced technology to produce JFET, MOSFET, and bipolar devices on the same chip. The TL500C and TL501C are characterized for operation over the temperature range of 0°C to 70°C. The TL500I and TL501I are characterized for operation from -40°C to 85°C.


NC - No internal connection

	LINEARITY	PACKAGE				
TA	ERROR	CERAMIC DIP	WIDE-BODY SO			
		(J)	(DW)			
0°C to 70°C	0.005% FS	TL500CJ	TL500CDW			
0-01070-0	0.05% FS	TL501CJ	TL501CDW			
– 40°C to 85°C	0.005% FS	TL500IJ	TL500IDW			
-40°C to 85°C	0.05% FS	TL501IJ	TL501IDW			

AVAILABLE OPTIONS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply voltage, VCC+ (see Note 1)+18 V
Negative supply voltage, V _{CC}
Input voltage, VI
Comparator output voltage range (see Note 2) 0 V to V _{CC+}
Comparator output sink current (see Note 2) 20 mA
Buffer, reference, or integrator output source current (see Note 2)
Total dissipation
Operating free-air temperature range: TL500I, TL501I40 to 85 °C
TL500C, TL501C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C

NOTES: 1. Voltage values, except differential voltages, are with respect to the analog ground common pin tied together. 2. Buffer, integrator, and comparator outputs are not short-circuit protected.

DISSIPATION RATING TABLE $T_A \leq 25^{\circ}C$ DERATING FACTOR $T_A = 85°C$ $T_A = 70 \,^{\circ}C$ PACKAGE POWER RATING POWER RATING ABOVE TA = 25°C POWER RATING DW 1125 mW 9 mW/°C 720 mW 585 mW J 1025 mW 8.2 mW/°C 656 mW 533 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Positive supply voltage, V _{CC+}	······································	7	12	15	V
Negative supply voltage, V _{CC} -		- 9	- 12	- 15	V
Reference input voltage, Vref(I)		0.1		5	v
Analog input voltage, VI				± 5	v
Differential analog input voltage, VID				10	V V
High-level input voltage, VIH	Control inputs	2			l v
Low-level input voltage, VIL	Control inputs			0.8	- v
Peak positive integrator output voltage, VON	M +	+9			
Peak negative integrator output voltage, VO	M	- 5			v
Full scale input voltage				2 V _{ref}	
Autozero and reference capacitors, Cz and (C _{ref}	0.2			μF
Integrator capacitor, CX		0.2			μF
Integrator resistor, R _X		15		100	kΩ
Integrator time constant, RxCx		See			
		Note 3			
Free-air operating temperature, TA	TL500I, TL501I	- 40		85	°C
	TL500C, TL501C	0		70	1 00
Maximum conversion rate with TL502C or T	L503C		3	12.5	conv/se

system electrical characteristics at V_{CC} \pm = ±12 V, V_{ref} = 1,000 ± 0.03 mV, T_A = 25 °C (unless otherwise noted) (see Figure 3)

PARAMETER	TEST CONDITIONS	TL501				TL500			
ranameren	TEST CONDITIONS		MIN TYP MAX		MIN TYP MAX				
Zero error			50	300		10	30	μV	
Linearity error relative to full scale	$V_I = 2 V \text{ to } 2 V$	1	0.005	0.05		0.001	0.005	%FS	
Full scale temperature coefficient		1	6			6		ppm/°C	
Temperature coefficient of zero error	$T_A = full range$	4		1			μV/°C		
Rollover error [†]		1	200	500		30	100	μV	
Equivalent peak-to-peak input noise voltage		1	20			20		μV	
Analog input resistance	Pin 1 or 2		10 ⁹			10 ⁹		Ω	
Common-mode rejection ratio	$V_{IC} = -1 V to +1 V$	1	86			90		dB	
Current into analog input	$V_{I} = \pm 5 V$	1	50			50		ρA	
Supply voltage rejection ratio		1	90			90		dB	

[†]Rollover error is the voltage difference between the conversion results of the full-scale positive 2 V and the full-scale negative 2 V. NOTE 3. The minimum integrator time constant may be found by use of the following formula:

Minimum
$$R_X C_X = \frac{V_{ID} (full scale) t_1}{|V_{OM} - | - V_I(pin 2)}$$

where

 V_{ID} = voltage at pin with respect to pin 2

 $V_1(pin 2) =$ voltage at pin 2 with respect to analog ground

t1 = input integration time seconds

electrical characteristics at V_{CC±} = \pm 12 V, V_{ref} = 1 V, T_A = 25 °C (see Figure 3)

integrator and buffer operational amplifiers

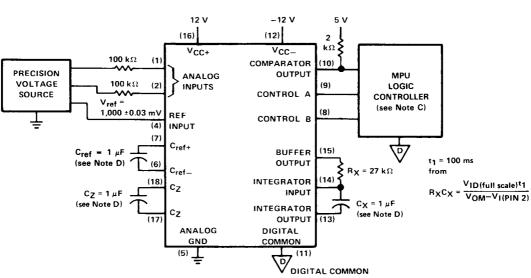
PARAMETER		PARAMETER TEST CONDITIONS				UNIT
VIO	Input offset voltage			15		m۷
IB	Input bias current			50		pА
VOM +	Positive output voltage swing		9	11		V
VOM -	Negative output voltage swing		- 5	- 7		V
AVD	Voltage amplification			110		dB
B ₁	Unity-gain bandwidth			3		MHz
CMRR	Common mode rejection	$V_{IC} = -1 V \text{ to } +1 V$		100		dB
SR	Output slew rate		`	5		V/µs

comparator

PARAMETER		PARAMETER TEST CONDITIONS		MIN TYP MAX		
VIO	Input offset voltage			15		mV
Чв	Input bias current			50		pА
AVD	Voltage amplification			100		dB
VOL	Low-level output voltage	lot = 1.6 mA		200	400	mV
ЮН	High-level output current	V _{OH} = 3 V		5	20	nA

voltage reference output

PARAMETER		PARAMETER TEST CONDITIONS		TYP	P MAX	UNIT
V _{ref(0)}	Reference voltage		1.12	1.22	1.32	V
	Reference-voltage	T (1)		00		
αV _{ref}	temperature coefficient	$T_A = full range$		80		ppm/°C
ro	Reference output resistance			3		Ω


logic control section

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Чн	High-level input current	$V_{IH} = 2 V$		1	10	μA
ΠL	Low-level input current	V _{IL} = 0.8 V		- 40	- 300	μA

total device

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC+	Positive supply current			15	20	mA
ICC –	Negative supply current			12	18	mA

PARAMETER MEASUREMENT INFORMATION

NOTES: C. Tests are started approximately 5 seconds after power-on.

D. Capacitors used are TRW's X363UW polypropylene or equivalent for C_X, C_{ref}, and C_Z; however for C_{ref} and C_Z film-dielectric capacitors may be substituted.

FIGURE 3. TEST CIRCUIT CONFIGURATION

external-component selection guide

The autozero capacitor C_Z and reference capacitor C_{ref} should be within the recommended range of operating conditions and should have low-leakage characteristics. Most film-dielectric capacitors and some tantalum capacitors provide acceptable results. Ceramic and aluminum capacitors are not recommended because of their relatively high-leakage characteristics.

The integrator capacitor C χ should also be within the recommended range and must have good voltage linearity and low dielectric absorption. A polypropylene-dielectric capacitor similar to TRW's X363UW is recommended for 4-1/2-digit accuracy. For 3-1/2-digit applications, polyester, polycarbonate, and other film dielectrics are usually suitable. Ceramic and electrolytic capacitors are not recommended.

Stray coupling from the comparator output to any analog pin (in order of importance 17, 18, 14, 7, 6, 13, 1, 2, 15) must be minimized to avoid oscillations. In addition, all power supply pins should be bypassed at the package, for example, by a 0.01- μ F ceramic capacitor.

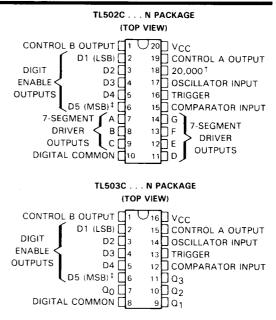
Analog and digital common are internally isolated and may be at different potentials. Digital common can be within 4 V of positive or negative supply with the logic decode still functioning properly.

The time constant R_XC_X should be kept as near the minimum value as possible and is given by the formula:

Minimum
$$R_X C_X = \frac{V_{ID} (full scale) t_1}{|V_{OM} - | - V_I(pin2)|}$$

where:

 $\begin{array}{l} V_{|D}(\mbox{full scale}) = \mbox{Voltage on pin 1 with respect to pin 2} \\ t_1 = \mbox{Input integration time in seconds} \\ V_{|\{\mbox{pin2}\}} = \mbox{Voltage on pin 2 with respect to analog ground.} \end{array}$


description of digital processors

The TL502C and TL503C are control logic devices designed to complement the TL500 and TL501 analog processors. They feature interdigit blanking, over-range blanking, an internal oscillator, and a fast display scan rate. The internal-oscillator input is a Schmitt trigger circuit that can be driven by an external clock pulse or provide its own time base with the addition of a capacitor. The typical oscillator frequency is 120 kHz with a 470-pF capacitor connected between the oscillator input and ground.

The TL502C provides seven-segment-display output drivers capable of sinking 100 mA and compatible with popular common-anode displays. The TL503C has four BCD output drivers capable of 100-mA sink currents. The code (see next page and Figure 4) for each digit is multiplexed to the output drivers in phase with a pulse on the appropriate digit-enable line at a digit rate equal to f_{OSC} , divided by 200. Each digit-enable output is capable of sinking 20-mA.

The comparator input of each device, in addition to monitoring the output of the zero-crossing detector in the analog processor, may be used in the display test mode to check for wiring and display faults. A high logic level (2 to 6.5 V) at the trigger input with the comparator input at or below 6.5 V starts the integrate-input phase. Voltage levels equal to or greater than 7.9 V on both the trigger and comparator inputs clear the system and set the BCD counter to 20,000. When normal operation resumes, the conversion cycle is restarted at the auto zero phase.

These devices are manufactured using l^2L and bipolar techniques. The TL502C and TL503C are characterized for operation from 0°C to 70°C.

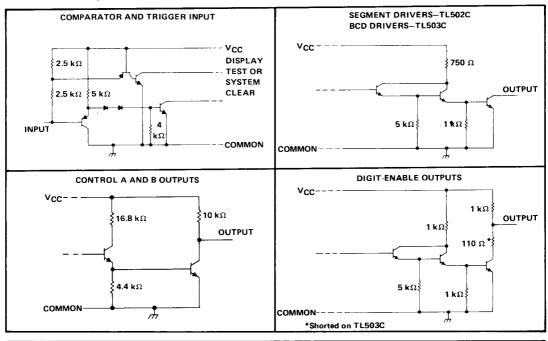
 $^\dagger Pin$ 18 of TL502C provides an output of f_{OSC} (oscillator frequency) + 20,000.

[‡]D5, the most significant bit, is also the sign bit.

TABLE OF SPECIAL FUNCTIONS	
$V_{CC} = 5 V \pm 10\%$	

TRIGGER INPUT	COMPARATOR INPUT	FUNCTION
V ₁ ≤0.8 V	V ≤6.5 V	Hold at auto-zero cycle after completion of conversion
$2 V \le V_1 \le 6.5 V$	Vi≤6.5 V	Normal operation (continuous conversion)
V _I ≤6.5 V	V _I ≥7.9 V	Display Test: All BCD outputs high
V _I ≥7.9 V	V ≤6.5 V	Internal Test
Both inputs to go	V ₁ ≥7.9 V	System clear: Sets BCD counter to 20,000.
simultaneously		When normal operation is resumed, cycle begins with Auto Zero.

DIGIT 5 (MOST SIGNIFICANT DIGIT) CHARACTER CODES


		TL5	02C SE	VEN-SE	TL5030	C BCD C	UTPUT	LINES			
CHARACTER						0	03	02	Q1	00	
	A	В	С	D	E	F	G	8	4	2	1
+	н	н	н	н	L	L	L	н	L	н	L
+ 1	н	L	L	н	L	L	L	н	н	н	L
_	L	н	н	L	н	н	L	н	L	н	н
- 1	L	L	L	L	н	н	L	н	н	н	н

DIGITS 1 THRU 4 NUMERIC CODE (See Figure 4)

		TL5	02C SE	VEN-SEG	GMENT	LINES		TL5030	C BCD C	UTPUT	LINES
NUMBER		_	^	•	-		G	03	Q2	Q1	00
	A	В	С	D	E	F	G	8	4	2	1
0	L	L	L	L	L	L	н	L	L	L	L
1	н	L	L	н	н	н	н	L	L	Ł	н
2	L	L	н	L	L	н	L	L	L	н	L
3	L	L	L	L	н	н	L	L	L	н	н
4	н	L	L	н	н	L	L	L	н	L	L
5	L	н	L	L	н	L	L	L	н	L	н
6	L	н	L	L	L	L	L	L	н	н	L
7	L	L	L	н	н	н	н	L	н	н	н
8	L	L	L	L	L	L	L	н	Ľ	L	L
9	ι.	L	L	L	н	L	L	н	L	Ł	н

H = high level, L = low level

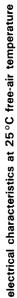
schematics of inputs and outputs

TL502C, TL503C Digital processors

absolute maximum ratings

Supply voltage, V _{CC} (see Note 4)	7	V		
	Oscillator	5.5		
Input voltage, V _I	Comparator or Trigger	9	- V	
	BCD or Segment drivers	120		
Output current	Digit-enable outputs	40	mA	
	Pin 18 (TL502C only)	20	-1	
Total power dissipation at (or below) 30 °C free-a	ir temperature (see Note 5)	1100	mW	
Operating free-air temperature range	0 to 70	°C		
Storage temperature range	-65 to 150	°C		
Lead temperature 1,6 mm (1/16 inch) from case 1	or 10 seconds	260	°C	

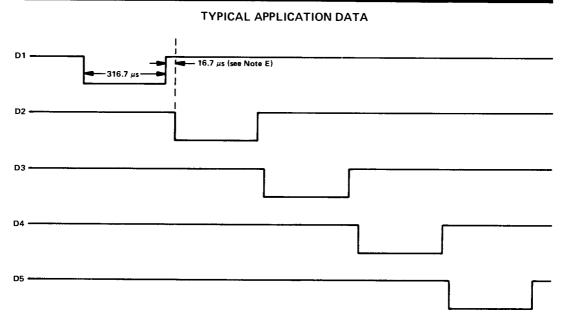
NOTES: 4. Voltage values are with respect to the network ground terminal.


5. For operation above 30 °C free-air temperature, derate linearly to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	V
High-level input voltage, VIH	Comparator and trigger inputs	2			V
Low-level input voltage, VIL	Comparator and trigger inputs			0.8	V
Operating free-air temperature		0		70	°C

			þ								ĺ
		TLOADAIAI	SIGUEICONDIENON			TL502C		F	TL503C		TINIT
	PARAMELER			CNO1	MIN	ТҮР	MAX	NIM	٩۲	MAX	5
VIK	Input clamp voltage	All inputs	$V_{CC} = 4.5 V,$	l ₁ = -12 mA		- 0.8	- 1.5		- 0.8	- 1.5	>
ν _{T +}	Positive-going input threshold voltage	Oscillator	VCC = 5 V			1.5			1.5		>
ντ –	Negative-going input threshold voltage	Oscillator	VCC = 5 V			6.0			6.0		>
VT + VT - VT -	Hysteresis	Oscillator	VCC = 5 V		0.4	0.6	0.8	0.4	0.6	0.8	
+ + +	Input current at positive-going input threshold voltage	Oscillator	VCC = 5 V		- 40	- 94	- 170	- 40	- 94	- 170	Ψ
	Input current at negative-going input threshold voltage	Oscillator	VCC = 5 V		40	117	170	40	117	170	Υ ^π
	Hick-level cutout voltage	Digit enable	Vcc = 45 V	0 =	4.15 4.25	4.4		4.15	4.4		>
HOA		Control A and B			4.25	4.4		4.25	4,4		
		Digit enable		IOL = 20 mA					0.2	0.5	
0	Low-level output voltage	Pin 18 (TL502C only) Control A and B	VCC = 4.5 V	loL = 10 mA loi = 2 mA		0.15	0.0 4.0		0.088	0.4	>
5		Segment drivers	<u>k</u> 1.			0.17	0.3		r 7	c c	
		BCD drivers				4	10		65		
-	Input current	Oscillator	$V_{CC} = 5.5 V,$	V ₁ = 5.5 V		8	2 -		3	-	٩W
HI	High-level input current	Comparator, Trigger Oscillator	VCC = 5.5 V,	VI = 2.4 V		- 0.6	- 1 0.5		- 0.6	- 1 0.5	шA
	Low-level input voltage	Oscillator Comparator Tringer	VCC = 5.5 V,	V _I = 0.4 V		- 0.1	-0.17 -1.6		- 0.1	-0.17 -1.6	٩w
		Digit enable		VO = 0.5 V,	- 2.5	4	2	- 2.5	- 4		
		Pin 18 (TL502C only)		V ₀ = 0.5 V	- 0.5	- 0.9					
HOI	Hign-level output current	Control A and B	VCC = 4.5 V	V _O = 0.5 V	- 0.25	-0.4		-0.25	- 0.4		шA
		Segment drivers BCD drivers		V ₀ = 5.5 V V ₀ = 5.5 V			0.25			0.25	
loL	Low-level output current (Output transistor on)	Digit enable	VCC = 4.5 V,	V0 = 3.55 V	18	23					мA
Icc	Supply current	vcc	V _{CC} = 5.5 V			73	110		73	110	мА


TL502C, TL503C Digital Processors

TL502C, TL503C Digital processors

special functions[†] operating characteristics at 25 °C free-air temperature

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
ь	Input current into	$V_{CC} = 5.5 V, V_{I} = 8.55 V$		1.2	1.8	mA
	comparator or trigger inputs	$V_{CC} = 5.5 V, V_{I} = 6.25 V$			0.5	mA

[†]The comparator and trigger inputs may be used in the normal mode or to perform special functions. See the Table of Special Functions.

NOTE E: The BCD or seven-segment driver outputs are present for a particular digit slightly before the falling edge of that digit enable.

FIGURE 4. TL502C, TL503C DIGIT TIMING WITH 120-kHz CLOCK SIGNAL AT OSCILLATOR INPUT

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

Texas Instruments

http://www.ti.com

This file is the datasheet for the following electronic components:

TL502CN - http://www.ti.com/product/tl502cn?HQS=TI-null-null-dscatalog-df-pf-null-wwe TL503CN - http://www.ti.com/product/tl503cn?HQS=TI-null-null-dscatalog-df-pf-null-wwe